
Journal of Statistical Physics, Vol. 78, Nos. 1/2, 1995 

Surrogate Hamiltonian Description of 
Solvation Dynamics. Site Number Density and 
Polarization Charge Density Formulations 

Harold L. Friedman, l Fernando O. Raineri, ~ Fumio Hirata, 2 
and Baw-Ching Perng I 

Received November 5, 1993 

We explore a recently developed theory of solvation dynamics that analyzes the 
molecular response of the solvent to a sudden change of the charge distribution 
of a solute particle immersed in it. We derive an approximate nonequilibrium 
distribution function f~(F, t) for a "surrogate" Hamiltonian description of the 
solvation dynamics process. The surrogate Hamiltonian is expressed in terms of 
renormalized solute-solvent interactions, a feature that allows us to introduce a 
simple reduction scheme in the many-body dynamics problem without losing 
essential solute-solvent static correlations that rule the equilibrium solvation. 
With f~(F, t) in hand we calculate the solvation time correlation function in 
two ways. The first one, previously reported, is basically a "dielectric formula- 
tion" in which the local polarization charge density of the solvent is the primary 
dynamical variable that couples to the field of the solute. In the new develop- 
ment reported here, the "site number density formulation," the primary dynami- 
cal variables comprise the set of local solvent site number densities. We lind that 
the dielectric formulation is embedded in the solvent site number density for- 
mulation as shown, for example, by comparing the respective time correlation 
functions of the solvation dynamics. An important feature of our approach is 
that at every stage the coupling between the solute and solvent is formulated in 
terms of the solute-solvent intermolecular interactions, rather than some sort of 
cavity construction. Furthermore, both the solute and the solvent molecules are 
represented by interaction site models. Applications of the dielectric theory are 
illustrated with calculations of the solvation dynamics of a cation in water 
and an exploration of the effect of the details of the charge distribution on the 
solvation dynamics of a benzenelike solute in acetonitrile. 
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1. I N T R O D U C T I O N  

The influence of solvent dynamics upon chemical kinetic processes in 
liquids has attracted much attention in recent years.t'-4) Considerable effort 
has been directed to the molecular interpretation of the solvation time 
correlation function (tcf) 

v( t ) -  v(c~ ) 
~ ( t )  (1.1) 

v(O) - v ( ~  ) 

which is measured in time-resolved fluorescence Stokes shift experi- 
ments." 3,5,6) Here v(t) is the fluorescence frequency at time t of a solute 
molecule that was suddenly excited at t = 0. The frequency v(t) changes as 
the solvent adjusts to the excited-state charge distribution of the solute. 
Thus v(t) and Y'(t) provide a way to monitor the global dynamic solvation 
response that follows the photoexcitation of the solute molecule. 

Stimulated by the ever-increasing resolution of the experimental 
results IL2'5'6) and also by theoretical predictions, 13'7-19) several labora- 
tories have studied the solvation dynamics of various model solutes in 
realistic model solvents by molecular dynamics (MD) simulations. ~6'2~ 
Both the solvation tcf ~ ( t )  and its linear-response estimates ~eP(t) [the 
solute is in the ground or "precursor" (P) state] and .~'s(t) [the solute 
is in the excited or "successor" (S) state] have been computed by non- 
equilibrium and equilibrium MD simulations. These simulations revealed 
severe limitations in the earlier theories, in the majority of which the under- 
lying solvent dynamics was represented in the Markovian limit and the 
solvent was modeled either as a dielectric continuum 17' s. ~2) or as a molecular 
fluid comprising hard spheres with embedded point dipoles (3'9-11't3) or 
several point multipoles/~4) In ref. 15 we presented a quasianalytical theory 
of solvation dynamics in which, for the first time, the solvent was repre- 
sented by an interaction site model (ISM). 3 The dynamics, however, was 
represented as diffusive. More recently, improved quasianalyticai model 
theoriestlS. 19) and some correlations tt6' 17) have been reported, which are 
not limited to diffusive dynamics. These new developments have met con- 
siderable success in describing (even quantitatively) the features of ..~(t) for 

3 In these models the potential energy of interaction between two molecules is a sum of 
site-site terms, including Coulombic interactions between partial charges qj located at the 
molecular sites. 
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some model systems, but they are somewhat limited by the simple model 
representation of the solvent and the solute, and also by their reliance on 
cavity constructions to deal with the solute-solvent interactions. 

In recent w o r k  (33"34) we presented a new quasianalytical theory of 
solvation dynamics, under classical statistical mechanics, with several dis- 
tinctive features. (a) The theory is based on a new renormalized linear 
response development, based on a surrogate Hamiltonian which incor- 
porates nonlinear aspects of the solute-solvent interactions in equilibrium 
solvation. (b) The solute-solvent coupling is expressed in terms of inter- 
molecular interactions; no cavity constructions are needed. (c) Both the 
solute and the solvent are represented by rigid nonpolarizable interaction 
site models, of the same type as those employed in most simulations. 
(d) The dynamical aspects of the theory are treated with the reference 
memory function approximation 115' 35-37} (RMFA), which goes beyond the 
Markovian approximation. These features considerably extend the scope of 
our initial work 1~5} in the theory of solvation dynamics. 

The surrogate Hamiltonian in item (a) can be contrasted with the 
factual Hamiltonian, written in terms of bare or unshielded solute-solvent 
interactions. The new theory t33'34) is based on the premise that accurate 
results for the solvent response may be derived from an approximate treat- 
ment of the dynamical problem cast in terms of a surrogate time-dependent 
Hamiltonian obtained by renormalizing the bare interactions in an 
appropriate way. 

In the earlier w o r k  133'341 the renormalization of the solute-solvent 
interactions has a distinct dielectric flavor; it is constructed with the solvent 
polarization charge density as the dynamical variable that couples the 
solvent to the renormalized field of the solute. We refer to this as the 
dielectric formulation of the surrogate theory. Here we explore the surrogate 
Hamiltonian theory of solvation dynamics by turning to an alternative 
renormalization of the solute-solvent interactions in which the solvent site 
number densities are the primary dynamical variables. We find that the 
solvent response includes not only the dielectric part considered before, 133" 34) 
but also another dynamical part that (at equal times) is orthogonal to the 
dielectric part. It is shown that the dielectric formulation of refs. 33 and 34 
is recovered from the solvent site number density formulation if we neglect 
the orthogonal part. 

We begin in Section 2 with a brief description of the dynamic solva- 
tion experiment, with the purpose of introducing certain concepts and 
notation. In Section 3 we apply the general formulation of nonequilibrium 
statistical mechanics to derive an approximation :hr t) for the non- J _ Y ~ .  , 

equilibrium distribution function of the solvent in the field of the solute. 
Although the formulation is very similar to Kubo's theory of linear response 
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to mechanical perturbations, c38) the development does not assume linear 
response in the conventional way. Instead, linear response to a surrogate 
perturbation (which may be nonlinear with respect to the bare perturba- 
tion) arises as the direct consequence of a linearization with respect to 
renormalized interactions ~ ' s  ~ between the solute and the solvent. An 
important feature of the development is its generality; the renormalized 

-L, definef~(F,  t) still need to be specified. solute-solvent interactions ~ u  that 
At the same level of generality, we examine in Section 4 the form of the 

h / -  expectation values of dynamical variables calculated under f s (  , t). The 
analysis suggests a simple and natural scheme for specifying the renor- 
malized solute-solvent interactions - o  ~u s.  We also show in this section that 
under f~ (F ,  t), the solvation tcf can be expressed in terms of a normalized 
equilibrium tcf governed by the Hamiltonian of the homogeneous solvent, 
while the influence of the solute is incorporated in the dynamical variables. 
Based on the results of Section 4, in Section 5 we develop the site number 

~D density formulation of the renormalized solute-solvent coupling ~ z .  In 
Section 6 we show how the previously reported 133' 34) dielectric formulation 
is embedded in the site number density formulation of Section 5. Some 
model calculations under the dielectric formulation are reported in Sec- 
tion 6. In Section 7 we summarize our main results. 

2. THE D Y N A M I C  SOLVATION EXPERIMENT 

We consider one ISM solute molecule in an ISM solvent. The solute 
can be in either of two electronic states: the precursor (P) state, with site 
partial charges {Q~}, or the successor (S) state, with site partial charges 
{QS}: We assume that the solute in the excited state returns to the 
electronic ground state by fluorescence on a time scale that is comparable 
with the structural relaxation rate of the solvent around the solute. We 
regard the solute as the source of an "external" field which is fixed in space, 
and we follow the solvent dynamics driven by this field) Throughout this 
paper the subscript 2 refers to the interaction sites of the solute, while the 
subscript aj refers to interaction site j of solvent molecule a. 

At times t < 0  the solvent is in equilibrium with the solute in the P 
state; the average solvent structure around the solute is characterized by 
the solute-solvent set of site-site pair correlation functions h~(r). At t = 0 
a photon of energy hvabs excites the solute to the S state. At t = 0  + the 

4 The superscript D is used to denote either P or S. 
5 Only those microscopic properties that depend on the coordinates and momenta of the 

solvent sites are dynamical variables. In this work collective dynamical variables are 
distinguished with a caret. 
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structure of the solvent a round  the solute is still described by the set hP.(r), 
as follows from the F r a n c k - C o n d o n  principle. Then the frequency v(t) of 
the t ime-dependent  fluorescence evolves from v(0 §  V,bs as the solvent 
adapts  to the new charge distribution {QS} of the solute. The relaxation 
continues until the solvent is in equilibrium with the solute in the S state; 
then the average structure is described by the successor set of solute-  
solvent site-site pair correlation functions hSj(r). In this limit the frequency 
of the fluorescence v ( ~ ) =  vn, becomes independent of time. 

The fluorescence frequency at time t is given by t~2' 271 

hv(t)=hvo+ ( 4 ;  t )  (2.1) 

where v o is the emission frequency of the S ~ P transition of the solute 
molecule in vacuum, while 

(q) ;  t) = I dO p((2) I ar f (r ,  t)~ (2.2) 

is the expectat ion value of the bare electrostatic energy gap 

~ = ~  ~AQ;.qj (2.3) 
2 aj /'2, aj 

under f(F, t), the nonequil ibrium distribution function that  describes the 
state F of the solvent under the field of the solute at time t .  6 In Eq. (2.3) 
we define AQ;. = QS_ QP as the change of the partial charge of solute site 
2 in the P ~ S transition. Fur thermore ,  r~.,,j = Ir).,,j[ (with r),oj-= r a j - r ) . )  is 
the distance between site j of solvent molecule a and solute site 2, and qj 
is the partial  charge of the type j solvent site, 

F rom Eqs. (1.1) and (2.1) we have 

~(t)= (q2; 0 ) -  (~;  ~ )  (2.4) 

where ( 4 ; 0 )  and (q l ;  c~)  are the respective values of (q2; t )  at t = O  § 
(just after the photoexci tat ion)  and t--* oo (when the solvent has equi- 
librated to the S charge distribution of the solute). 

6 More precisely, f(F, t) is the conditional probability density that at time t the coordinates 
and momenta of the solvent sites are F= {r,,~, p,j} given that at time t =0 the solute had 
orientation .(2. Correspondingly, p(s'2) is the probability density for the solute to have orien- 
tation g2 at t = 0. 
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The solvent distribution function satisfies f(F, 0)=f~q(F )~  e x p ( -  flH P) 
at t = 0  and f (F ,  oo)=fSq(F)~exp(- f lH s) at t= o o ,  where f l=(kBT)  -~ 
is the inverse of the temperature in energy units, and H ~ is the factual 
Hamiltonian of the solvent in the field of the solute at state D 

H D = H , , , + ~ ' * + ~  I'D, D = P , S  (2.5) 

Here H,, is the Hamiltonian of the pure solvent, while ~*  and ~cD are, 
respectively, the short-range and the long-range (Coulombic) parts of the 
solute-solvent potential energy of interaction. We assume that the short- 
range interactions ~* are independent of the solute state. On the other 
hand, 

~,,i,o = ~ Z Q~ q/ (2.6) 
2". aj F )., aJ 

depends on the solute state through the solute partial charges Q~. From 
Eqs. (2.3), (2.5), and (2.6)it follows that 133'341 

u?~ = H s _ H P = ~/.s _ ~t.P (2.7) 

The development in Eqs. (2.1)-(2.7) comprises the factual description 
of the solvation dynamics experiment; it is faithful to the original 
Hamiltonian model of the solute-solvent interactions, Eq. (2.5). 

To calculate the solvation tcf Lr(t) from Eq. (2.4) we need to know 
( ~ ; t )  in the range between t = 0  § and t =  ~ .  In computer simulation 
studies of solvation dynamics, nonlinear response of the solvent has been 
observed in certain cases, as revealed by the lack of agreement among: 
(i) .,~(t) calculated with Eq. (2.4) by nonequilibrium MD, (ii) the linear 
response estimate ~eP(t) based on time-dependent solvent fluctuations in 
equilibrium with the initial state of the solute, and (iii) the linear response 
estimate ~s ( t )  based on time-dependent solvent fluctuations in equilibrium 
with the final state of the solute. The differences among the three tcf's 
provide a measure of the deviations from linear response. Particularly 
strong nonlinear effects have been reported by Fonseca and Ladanyi ~26) 
in the solvation dynamics of dipolar solutes in methanol, The theory 
presented in the next section, although inherently a linear response theory, 
fares surprisingly well when its prediction for the solvation tcf is compared 
with Y'(t) calculated by nonequilibrium MD trajectories. 133'3~1 On the 
other hand, another consequence of nonlinear response in solvation 
dynamics, namely the dependence with time of the lineshape of the fluor- 
escence spectra of the solute, discussed in detail by Carter and Hynes, 1271 
is not captured by the theory presented in this work. 
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3. S U R R O G A T E  N O N E Q U I L I B R I U M  D I S T R I B U T I O N  
F U N C T I O N  OF THE S O L V E N T  

As in previous reports, 133' 34) we study a "surrogate" description of the 
solvation dynamics experiment in which the solute-solvent coupling is 
renormalized in a way that is consistent with a Hamiltonian formulation. 

Like the factual description of Section 2, the surrogate descrip- 
tion (33'34) of the solvation dynamics experiment has the solute-solvent 

~ p  
potential energy of interaction abruptly changing at t = 0 from its form ~u z 
when the solute is in the P state to the form ~bs when the solute is in the 
S state. At t < 0 and t = oe the solvent is in equilibrium with the solute in 
states P and S, respectively, and therefore is described by equilibrium 
distribution functions defined in terms of the surrogate Hamiltonians H w  
and H s 

X ,  

* D  H~ D = P , S  (3.1) 

In contrast with the factual description, however, ~Pw and ~ps represent 
renormalized solute-solvent potential energies of interaction which in 
general may be nonlinear with respect to the bare interactions that appear 
in Eq. (2.5). Therefore, to avoid inconsistencies (i.e., not to overcount the 
interactions), the equations of the surrogate description are systematically 

~ D  linearized with respect to the renormalized interactions ~ z .  For example, 
the situations at t < 0 and t = ~ are described by the surrogate equilibrium 
distribution functions (33' 341 

O - -  w fr, oq(F)=feq(r)[1-~6(~) 3, D = P , S  (3.2) 

which result from the linearization of the equilibrium canonical distribution 
function , ,~exp(- /?H~) with respect to the renormalized solute-solvent 
interactions ~ o ,. U s.  In Eq. (3.2)feq(F) is the equilibrium distribution function 
of the homogeneous solvent, i.e., f[q(F)~exp(-flH,.). In reference to 
6 ( ~ z  ~ in Eq. (3.2), we note that in this paper we use the notations ( 6 )  
and 66 to respectively indicate the average of a dynamical variable 
under f~'q(F) 

(~) -~ aa p(~) I clr f~~(r)~ (3.3a) 

and the fluctuating part 

6 6 - 6 -  (6) (3.3b) 

of 6 relative to its average value in the homogeneous solvent. Thus in 
Eq. (3.2) we have 6 ( ~ ' ~ ) =  - o  
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In the surrogate description, the solvation dynamics following the 
photoexcitation is governed by the Liouville operator .,~s associated with 
the surrogate Hamiltonian H s of the solvent under the renormalized field 
of the solute in the S state. Thus, the surrogate counterpart f z ( F ,  t) of the 
factual solvent distribution functionf(F, t) [cf. Eq. (2.2)] is the solution of 
Liouville equation 

(a, + Les) f ~ ( r ,  t) = 0 (3.4a) 

with the initial condition 

f~(r, o) = f  r, eq(r) (3.4b) 

in which f~,eq(f) is given by Eq. (3.2) with D = P. 
It is convenient to separate the distribution function f z ( F ,  t) and the 

Liouville operator ~ s  each into two parts, one (index w) that is inde- 
pendent of the renormalized solute-solvent interactions ~ and the other 
(index ~u) that is linear in qt~: 

f z ( F ,  t) = f ~ ( F ,  t) + f ~ ( F ,  t) 

~ s = ~ + ~ s  
Z', ,/J 

(3.5a) 

(3.5b) 

where ~,,. is the Liouville operator of the homogeneous solvent. Then, 
according to the order in the solute-solvent interactions, Eq. (3.4a) 
separates into the equations 

(0, + 0~.,) f~.(F, t )=O 

(0, + .~,,,,) f ~ ( F ,  t) s ,, = - Z/ )z ,~ , fz (r ,  t) 

(3.6a) 

(3.6b) 

which have the formal solution 

f~:(F, t) = ~-~,,,(t) f ~ ( F ,  O) (3.7a) 

~u / - ,  , a -  s ~ w ~  F f z (  , t) = ~,,.(t) y( t )  = ~-~,,,(t) y(0) - dt ,~,,(t - t') L~z. ~,Jz~ , t') (3.7b) 

The first equality of Eq. (3.7b) defines the auxiliary function y(t), while 

~,,,(t) = exp( - tS~,,.) (3.8) 

is the propagator of the homogeneous solvent. 
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The calculation is completed with the initial condition, Eq. (3.4b), 
which separates according to the order in the renormalized interactions as 

w f~:(F, 0)=  feq(F) (3.9a) 

f r( , O) ~foq(r)  6 ( 9 ~ )  (3.9b) 

When Eq. (3.9a) is replaced in Eq. (3.7a) we have 

w 0 7 -  w w f s ( F ,  t) = y,,(t) feq(F) = feq(F) (3.10a) 

where in deriving the second equality we have taken into account that 
"' 5Yr,~,f z(F, t') in the ,,~wfeq(F)=0. Using this result, we can replace s ,, 

inhomogeneous term of Eq. (3.7b) by s ,. .LPr,~efeq(F), for which we can apply 
the relation 

~ S  w - -  ~e ~ S z. . f o.( F) - flf r F)( ~,, ~F s ) 

Then Eqs. (3.7b) and (3.9b) give 

v F  f z (  , t) "' " s = - # f o q ( r ) ~ ( e s ) + # f ' ~ ' q ( I ' ) ~ g ( - t )  (3.10b) 

where 

~ =  s P ~ (3.11) H~--  H ~ =  ~ , s _  ~s" e 

is the surrogate counterpart of the factual energy gap o~ defined in 
Eq. (2.7). Furthermore, 6 ~ ( - t )  is the result of applying the operator 
exp(-/,L~,,) to the dynamical variable 60 ~ =  ~ - ( ~ )  [cf. Eq, (3.3b)]. 

Replacing Eqs. (3.10) in Eq. (3.5a) leads to the important approxima- 
tion t34) 

h F f r (  , t) = f s  eq(F ) + flf~.q(/-) 6 d ( -  t) (3.12) 

where fS,,q(F) is the surrogate equilibrium distribution function given by 
Eq. (3.2). Equation (3.12) is the same as Eq. (3.16) of ref. 34 (where it is 
derived in a different way), and it also underlies the results for the solva- 
tion tcf and the steady-state Stokes shift discussed in ref. 33. It is important 
to note that in this approximation for the solvent distribution function the 
dynamics is ruled by the propagator ~-~,,(t) of the homogeneous solvent. 
This explains the descriptive name "homogeneous" approximation (super- 
script h) for f~(F ,  t); it amounts to a partial neglect of the influence of the 
solute upon the solvent dynamics in its vicinity. ~ We note that this 
limitation is shared by all other quasianalytical theories of solvation 
dynamics reported to date. As will be discussed in the next section, this has 
the consequence that the time dependence of the expectation value of a 
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h F dynamical variable under f r (  , t) is described by an equilibrium tcf 
[Eqs. (4.1) and (4.3) below] governed by exp(t~v), the time displacement 
operator of the homogeneous solvent. 

We denote the average of a dynamical variable f~ under fhs(F, t) by 
(((~; l))  h. It is given by an equation similar to Eq. (2.2), but with f~ and 
h F fE(  , t) replacing, respectively, q2 and f (F ,  t). In view of the interpretation 

of g as the surrogate counterpart of q2, we consider 

~ - ( t )  = ((~; t ) )a  - ((~ ~ ))h (3.13) 

as the natural surrogate estimate of the solvation tcf ~( t ) ,  Eq. (2.4). 

4. E X P E C T A T I O N  V A L U E S  

With Eq. (3.12) we calculate 

( (~;  t))h = ( (~))s  + ~C,,(t) 
where 

(4.1) 

(((#))~ D = P , S  (4.2) 

is the expectation value of c~ under the linearized surrogate equilibrium 
o F distribution function f s x q ( ) ,  Eq. (3.2). Furthermore, C~(t) is the equi- 

librium tcf 

C,s(t) = (6r 6~(0) ) = f dr2 p(f2) f dF f'2'q(F)[exp(t~,.) 6r 6d (4.3) 

which depends [through f2'q(F) and the time displacement operator 
exp(t~,,)] on the Hamiltonian H,,, of the homogeneous solvent. In 
Eq. (4.3) 6c# = f~ - (c~). 

Assuming that C~(t) vanishes when t--* ~ (ergodicity), it is a simple 
matter to show from Eqs. (3.2) and (4.1)-(4.3) that 

r  = r  P, ((~; ~ ) ) h =  r  s (4.4) 

We are now in position to derive a convenient expression for the 
surrogate estimate ~eh(t) of the solvation tcf, Eq. (3.13). Thus, using 
Eqs. (4.1)-(4.4) with f~ = ~, the surrogate energy gap, we obtain (33'34) 

~r Cg(t) (6~(t) 6~(0)) 
(4.5) 
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This result resembles the familiar linear response approximation ~D(t) to 
the solvation tcf ~( t ) ,  namely a normalized equilibrium tcf of the factual 
energy gap ~ which may be calculated under equilibrium molecular 
dynamics computer simulations. ~2~ 23" 25' 26' 31~ However, in contrast with 
the homogeneous estimate .~'hr(t), the tcf in the factual estimate ~D(t) is 
governed by the solvent Hamiltonian H ~ [cf. Eq. (2.5)] that incorporates 
the bare field of the solute in state D; in the approximation of Eq. (4.5) 
the influence of the solute enters in the dynamical variable g in a time- 
independent form. 

From Eqs. (4.1) and (4.4) it also follows that if we choose the renor- 
malized solute-solvent couplings ~ w  and ~ s  such that the equation 

<<f~ >>D = <f~>D, D = P , S  (4.6) 

is satisfied for a selected dynamical variable (~, then the surrogate expecta- 
tion value (((9; t))h will coincide with the factual correct expectation value 
<aA;t> both at t = 0  and at t=oo :  

<<f~;0))h=<f~;0>=<f~> P, <<#;oo>>h=<f# ;oo>=<~> s (4.7) 

In Eqs. (4.6) and (4.7) we have 

<f~>D = [ dO p(g2)~ dr f ~ ( r ) ~  (4.8) 

where f ~ ( F ) ~  e xp ( - f lH  n) is the equilibrium distribution function of the 
solvent in the bare field of the solute at state D [cf. Eq. (2.5)]. 

For those dynamical variables c~ that satisfy Eq. (4.6) we may write 
Eq. (4.1) in the alternative and remarkable form 

<<r t>>.= <~>s+ [<~>,,_ <8>s] ~,(t) (4.9a) 

where 

�9 ~(t) =- C~(t)/C~(O) (4.9b) 

Although Eqs. (4.9) describe the evolution of ((f~; l)> h through the 
equilibrium tcf ~ , ( t )  (in the same spirit as linear response theory), the fact 
that the surrogate energy gap ~ that enters in ~ ( t )  is defined as the 

A D 
difference between the two renormalized interaction energies 7tz gives 
Eqs. (4.9) a flavor of nonlinear response. At least Eqs. (4.9) recover the 
correct (and not necessarily linearly related) values of the expectation 
value of ~ at t = 0 and t = oo, while at intermediate times they interpolate 

822/78/1-2-18 
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according to an equilibrium tcf involving a renormalized dynamical 
variable. 

At this point we still have to establish the molecular expressions for 
the renormalized solute-solvent interactions ~ r  ~ From Eq. (4.4) we con- 
cluded that the theory will give the correct values (((~; 0)) h= <c~; 0> and 
((~;  oO))h= ((~; o0) for a dynamical variable a] if we choose ~ r  n such 
that Eqs. (4.6) are satisfied. This suggests a method for specifying the 
renormalized interactions, t34) namely (i) to specify a functional form of the 

~ D  renormalized interactions 7'~ and (ii) to choose the special dynamical 
variables f# for which Eq. (4.6) is required. 

In previous work ~33'34) we implemented one such renormalization 
scheme based on the solvent polarization charge density at point r relative 
to the solute site 2 

~.~(r) = )-" qj6(r - r:..aj) (4.10) 
a)  

as the special dynamical variable c~, together with renormalized solute- 
~ D  solvent interactions ~u s of the form 

"o ~ I d3r ~:..u(r) o r ~ . . =  ~o~,:.( ), D = P ,  S (4.11) 

expressed in terms of renormalized electrostatic potentials q~rn ;.(r) due to an 
effective charge density of the solute [cf. Eq. (6.10) below]. With ~:.,u(r) in 
the role of f#, Eq. (4.6) gives 

D A D ((pzu(r)>> = <p:..u(r)> = p ~ qjh~(r)  
J 

which is the average solvent polarization charge density at a distance r 
from the solute site 2 when the solute is in electronic state D. As shown in 
refs. 33 and 34, this form of Eq. (4.6) (for every site 2) is sufficient to fix the 
identity of the renormalized electrostatic potentials r of Eq. (4.11). 
This procedure led to an accurate theory of solvation dynamics. (33' 34) 

5. SITE N U M B E R  DENSITY F O R M U L A T I O N  

5.1. Dynamical Variables 

Here we investigate an alternative renormalization based on the site 
number densities of the solvent p~:.j(r) [cf. Eq. (5.2) below] rather than on 
the polarization charge density ~:.u(r). Correspondingly, we choose to 
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express the renormalized solute-solvent interactions ~ n  in the form 
[compare with Eq. (4.11)] 

9~ = Z Z f d3r/~)..j(r) cD )d(r ) (5.1) 
z j 

in terms of the microscopic solvent site number density of type j at position 
r relative to site 2 of the solute 

~.,2 (r) = ~ fi(r - r~.,.j) (5.2) 
o 

and renormalized pair interactions ~bs~ ~j(r) that need to be determined. The 
sum in Eq. (5.2) is carried over all solvent molecules. It is convenient to 
write ~.,j(r) as 

rL.j(r) = <rL..j(r)> + 6a~j(r),  <,L.,j(r)> = ;  (5.3) 

where 6fi)..j(r) measures the fluctuations with respect to the average 
number density p of the homogeneous solvent. Note that in writing 
(~ . , j ( r ) )  = p we have considered the sites of a solvent molecule as different 
or distinguishable. 

With Eq. (5.3), -D ~gz given by Eq. (5.1) becomes 

n o _  - 6 ( 9 o )  ~ - < ~'~ > + (5.4) 

where 

and 

( ~o  > = ~ ~. p f d3r d~.~j(r) (5.5a) 
.7. j 

6 ( 9 ~ )  = "~' 1 
~ , ~ j - k )  (5.5b) ~x_<~o>=(_~)3 f  d3kZ~6~. , j (k)  o ( 

;,. j 

In the second equality 6 (~  n) is written in terms of the Fourier transform 
of the renormalized pair interaction ~brnj.j(r) 

~n,~j(k) = f d3r eik"q6n,)j(r) (5.6a) 

and the Fourier component of the fluctuating part of the microscopic 
number density 

6fi~..y (k) = ~ eik .r~,.j_ (2rc)3 pg(k) (5.6b) 
a 
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Because of the appearance of the Dirac delta function, and noting that 
r~.,~j= r~j-r~,  we may equally well write the right-hand side of the last 
equation in the more convenient form 

6fi~,j(k)=e-ik'~.I(~e~k"~ ) (5.7) 

The second equality defines 6hi(k). 

5.2. Renormal ized Pair Interact ions 

We now turn to the determination of the o ~br,)j(k ) using the prescrip2 
tion discussed at the end of Section 4. As the special dynamical variable ff 
for which Eq. (4.6) is enforced we choose 6ri~.,j(k). Thus, for every 2, we 
require that 

( ( 6 ~ . , j ( k ) ) )  D = ( 6 h ) . , j ( k ) )  ~ = ph~.(k) ( 5 . 8 )  

The second equality follows from the explicit evaluation of the factual 
average (6rL,j(k))~ here h~(k) is the Fourier transform of the (solute site 
2)-(solvent site j) equilibrium pair correlation function h~(r) when the 
solute has the state D charge distribution. 

To evaluate the left-hand member of Eq. (5.8) we use Eq. (4.2) with 
f~ = 6h~.j(k) and n f r ,  cq(/') defined in Eq. (3.2). After noting that 
(6ri).,i(k)) = 0, we have 

# 
- (2n)3Id3k '~(6h~. , j (k)6ha, , , (k ' ) )~~ ') (5.9) 

2 '  / 

where in the second equality we have used Eq. (5.5b). For the static 
average, using Eqs. (3.3a) and (5.7), we evaluate 

(6ri;..s(k) 61~).,,l(k')) - - -  (e-ik'r~'e-ik"r~')f2 (6rij(k) 6ht(k')) 

= (2~) 3 6(k + k') Sjl(k) co).~., (k) (5.10) 

In the second equality 

Sit(k)={ 1 ( 6hj(k ) 6~t( - k  ) ) } o ~ (5.11) 

is the static site-site structure factor of the homogeneous solvent, while 

~ (k) = (e- ik l r~-  r~"l)s~ =I dO p((2) e -ik'~r~.-wl (5.12) 
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is the intramolecular site-site correlation function of the solute, t39-41) To 
derive the second equality of Eq. (5.10) we noticed that the translational 
invariance of the homogeneous solvent leads to the identities ~42~ 

<~(k)/~(k') > = <~(k)/~(-k) > ~k,--k' 

= (2~)3 6(k + k') { 1  <,~(k)/~(-k) >},~ (5.13) 

where ~(k) and b(k') are, respectively, the Fourier components of wave- 
vectors k and k' of the solvent fields ,~(r) and/~(r). In Eqs. (5.11) and (5.13) 
{ ..- } ~ indicates the thermodynamic limit operation on the quantity inside 
the braces. 

Combining Eqs. (5.9) and (5.10) leads to 

<<6~ ~,j(k) >> r' = - f l ~ o ) x ~ , ( k ) S j , ( k ) q ~ , ~ . , , ( k )  (5.14) 
2 '  / 

On the other hand, the right-hand side of Eq. (5.8) may be evaluated 
with the reference interaction site method (RISM) equation for the solute- 
solvent site-site pair correlation functions h~ 4o, 43) For the solute at ; . j  �9 

infinite dilution in the solvent we have 

ph~.(k) = ~. ~" a~.x,(k ) c~,,(k) So(k ) (5.15) 
2'  I 

Note that the solvent-solvent correlation functions (subscripts /j) corre- 
spond to the homogeneous fluid, while c~.(k) is the solute-solvent RISM 
site-site direct correlation function when the solute is in state D. 

Combining Eqs. (5.8), (5.14), and (5.15), we identify the renormalized 
solute-solvent pair interaction D er,  v(k) as proportional to the corre- 
sponding solute-solvent direct correlation function 

_fldzD j(k) = _ flr ) o  = c~(k)  (5.16) 

D r with an equivalent relation in r-space. With this interpretation of r  
the renormalized solute-solvent potential energy of interaction ~ in 
Eq. (5.1) is the same as in the Gaussian bath theory of Chandler et al. r 

5.3. Solvation Time Correlat ion Function 

Equations (3.11), (5.4), and (5.5) imply for the surrogate energy gap 

g= < g > + ~  (5.17) 
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where 

( ~ )  = Z  ~ P f dar Ag~r,~.j(r) (5.18a) 
;. j 

6o~=(2-~ f d3k Z E fFl~.j(k) A(~s.aj(-k ) (5.18b) 
;. j 

The functions zJfs.~j(r)- s P =(ax.aj(r)-~x.;.j(r) play the role of surrogate 
driving agents, ~33) and are given by the equation 

- f l  A~br,;j(r) = - fl A~brjj(r) = Ac)j(r) (5.19) 

in terms of Ac;j(r) -- cSj(r) -- c~(r). 
With Eq. (5.18b) we calculate for C~(t)= (6~(t)6~(0)) in Eq. (4.5) 

Cr = ~  f d~k dak' 2 2 (~Fl;.,j(k,t) 6fi;.'.t(k')) 
( ) ~j ~.,, 

x zl{bz.aj ( - k )  A(~x.~.,~(-k') (5.20) 

where the dynamic density tcf (6~a,j(k, t)fih;.,j(k')) is defined under the 
Hamiltonian H., of the homogeneous solvent. By applying the same steps 
as in Eq. (5.10) we obtain 

(6~;.,j(k,t) fh~,,l(k'))=(2n)3 6(k +k')Fjt(k,t)og;.;.,(k) (5.21) 

where 

Fjt(k, t)= { 1 ( 6Flj(k, t) Ml,(-k ) ) }~ (5.22) 

is the dynamic tcf of the atomic site densities in the homogeneous solvent. (45) 
The initial value Cr of the surrogate energy gap tcf is obtained from 
Eqs. (5.20) and (5.21) and noting that Fit(k, t= O)= Sjj(k) [of. Eq. (5.11)]. 
Therefore, in the renormalization scheme based on the site number densities, 
we derive for the surrogate estimate ~ ( t )  of the solvation tcf 

~ ( t )  - S~ dk k 2 ~j, Fj,(k, t) ~s.jt(k) (5.23) 
J~ dk k 2 Ej, Sj,(k ) ~.j,(k) 

In this approximation all the details of the solute-solvent interactions are 
incorporated in the static coupling functions 

~x.j,( k ) = ~. coz;, ( k ) A(~s,~j( k ) A(br.;,,(k ) (5.24) 
22' 
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through the surrogate driving agents d~bz.;j(r) given in Eq. (5.19). The time 
dependence, on the other hand, follows from the functions Fj~(k, t) of the 
homogeneous solvent. Equations (5.23) and (5.24) are new results of this 
work. 

The practical implementation of Eq. (5.23) requires the calculation of 
the static coupling functions ~'s.jt(k), which is no more difficult than the 
calculation of the coupling function ,~s(k) of the dielectric theory ~ 34~ [cf. 
Eq. (6.17) below]. Equation (5.23) also requires the knowledge of the tcf's 
Fit(k, t) of the homogeneous solvent, which unfortunately are not easy 
to calculate. To our knowledge, only the site-site Smoluchowski-Vlasov 
theory ~4~ is capable of estimating these functions, but in its current form, 
only within the diffusion approximation for the dynamics. 

6. POLARIZATION CHARGE DENSITY F O R M U L A T I O N  

6.1. Dynamical  Variables and Renormalized Electrostatic 
Potentials 

In this section we consider the relation between the renormalized 
interactions ~ of the preceding section and the renormalized dielectric 
theory, based on Eqs. (4.10) and (4.11), presented in previous reports. ~ 34) 
For this purpose it is convenient to introduce the projection operators 

k (6 .1 )  #; . .~( - - - )=  ( .... /Sz.,,(k)*)(~;..v(k), #;..v(k)*)-' tS~.v(k) 

and .~.~ = 1 -#~ .~ .  Here 

~..~(k) = ~ qje ik'r~'.* (6.2) 
aj 

is the Fourier component of the solvent polarization charge density tS).v(r) 
given in Eq. (4.10). A more useful representation is 

tSa.,(k) = e- ik  .r~ ~ qje,k-r, = e--ik r~./~(k) (6.3) 
aj 

where the second equality defines the Fourier component of the solvent 
polarization charge density relative to an arbitrary reference frame. 

In Eq. (6.1) we have introduced the scalar product 

(~(k),/~(k)*) = { 1  (~(k) /~( -  k ) )  }o ~ (6.4) 

in terms of the homogeneous solvent average of Eq. (3.3a). It is not difficult 
to show that (tS~.u(k)) = ( # , ( k ) )  =0.  
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With the help of the operators r and ~k ).., j,,~ we can dissect ~tia, j(k) 
into a component proportional to the fluctuating polarization charge 
density fi)..,(k) and a component that is orthogonal to it, 

6 ~ . / k )  = ( ~ . ,  + .~..,) ~,~,j(k) = SAk ) ~.,,(k) + 6(~.,/k) (6.5) 

The magnitude of the component along /Sa,~,(k), the "dielectric part" 
(subscript/~), is measured by the charge number factor 

6tj(k) ~ (6~,j(k),  tS~.,,(k)*)(/5~.,,(k), ~ , , ( k ) * ) - '  (6.6a) 

which, after using Eqs. (5.7), (6.3), and (6.4), may be expressed in terms of 
the equilibrium structure functions of the homogeneous solvent ~33" 34~ 

2,  q, [o),j(k) + ohu(k)] 
8j(k ) = ~., E, q,q, [co,,(k) + ph,,(k) ] (6.6b) 

For the orthogonal part (subscript ~) we have 

a(~ j(k) = .~k atia4(k) --_ ah).d(k) _ :~,(k) h)..,(k) (6.7) 

It is important to note that the # and ~" components of 6~.](k) are 
mutually orthogonal with respect to the scalar product of Eq. (6.4) only 
when they are evaluated at the same instant. 

The separation of 6t~)..~(k} according to Eq. (6.5) directly leads to a 
similar decomposition of the renormalized solute-solvent potential energy 
of interaction, Eq. (5.5b), 

6I r = 6(r + 6(r (6.8) 

where 

2 

(6.9a) 

6 ( ~ . c ) = ( 2 ~ f d 3 k ~ , , ~ . j ( k  ) ~ ( Cz,~j - k )  
~. y 

(6.9b) 

Note that in this approach the polarization part 6(~:,~,) is naturally 
�9 expressed in terms of the Fourier transform ~0ff,r of the renormalized 

electrostatic potentials q0~.~(r} at position r relative to site 2 of the solute 
in state D. The electrostatic potentials o ~0z.).(r) are related to the renor- 
realized pair interactions r by the relation 

-flq~~ - f l ~  8~(k}cJ~j.~(k)=~ Sj(k)c~(k) (6.10) 
] J 
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where in the second equality we have used Eq. (5.16). Applying Parseval's 
theorem, we see that Eq. (6.9a) is the same as Eq. (4.11), which is the basis 
for the renormalized dielectric formulation developed in refs. 33 and 34. 
The equivalence is completed with Eq. (6.10) for the interpretation of the 
renormalized electrostatic potentials ,,D tL~ r 34) WZ, 2',~I �9 

6.2. Solvation Time Correlation Function 

It follows from Eqs. (6.8) and (6.9) that the surrogate energy gap o ~, 
Eqs. (5.17) and (5.18), also separates into two components: 

g =  <~> + 6g,, + 6~r (6.11) 

where 

and 

6~u_ 1 
(2rt)3 f d3k '~. ~:..,(k) A~oz.:. ( - k )  (6.12a) 

). 

6gr = ( ~ ) 3  f d3k ~ ~ 6~:.j(k)A~bz,~(-k ) 
), j 

In the polarization part 6~, we have [compare with Eq. (5.19)] 

(6.12b) 

- f l  Atpz,~(k)= - f l  Acpz,:.(k) = ~, O}(k) Ac;r (6.13) 
J 

The result for the surrogate estimate ~eh.( t)  of the solvation tcf 
reported in refs. 33 and 34 [under the notation ~e~(t)] is recovered 
from Eq. (4.5) by systematically neglecting in the equations of Section 5.3 
the ~ component of the surrogate energy gap, i.e., 60 ~ = 6ok.. Thus the 
surrogate estimate ~h,.(t) is calculated from the normalized energy gap tcf 
Cs,~(t)/C~,.(O), where 

C ~,,,(t) = ( 6~.(t) 6~,(0) ) (6.14) 

With Eq. (6.12a) and repeating the steps leading to Eq. (5.23) we find ~33' 34) 

~ . . ( t )  - ~ dk k2C,(k, t) ~r(k) (6.15) 
i~ dk k2S,,(k) ~z(k) 

The time dependence of ~hz.~(t ) is governed by the polarization charge tcf 
of the homogene6us solvent 

Cu(k , t )={ l<tsu(k , t )P . ( -k ) ) }o  ~ (6.16) 
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which is functionally equivalent to the frequency- and wavevector-depend- 
ent longitudinal dielectric function of the homogeneous solvent. (15'35-37) 
Correspondingly, S . ( k ) = C ~ ( k ,  t = 0 )  is functionally equivalent to the 
static longitudinal dielectric function of the solvent. (15'461 In ~hz..(t ) the 
effects of the solute-solvent interactions appear in the static coupling 
function(33, 34) 

~ z ( k )  = ~ og:.:,(k) A~pz,~(k) Aq~z,:,(k) (6.17) 
22' 

through the renormalized driving agents Aq~z,;.(k), Eq. (6.13). 
A complementary interpretation of .~h..(t) is provided by the 

equation 

~hz'"( t )  =- ((6~,; 0) ) .  h - ((6oe.; ~ ))h (6.18) 

where ((50~,; t)) h denotes the average of the polarization part of the sur- 
rogate energy gap over a different surrogate nonequilibrium distribution 

h F function f r , . (  , t). The latter is obtained by repeating the derivation in 
~ D  Section 3 using the form Uz, . ,  Eq. (4.11), for the renormalized solute- 

solvent interactions. The derivation of ~h . , ( t )  in ref. 34 was obtained by 
this method. 

7. APPLICATIONS OF THE DIELECTRIC THEORY 

The accurate implementation of the surrogate estimate ~o~h(t), 
Eq. (5.23), must wait for improvements in the theory of the site number 
density tcf's Fjl(k, t) of the homogeneous solvent. (45'47) For this reason in 
this section we only present results for the surrogate estimate Y'h,u(t) of the 
solvation tcf. Two examples are considered: the solvation dynamics of an 
ion in water, (33' 34) and the solvation dynamics of a family of benzenelike 
solutes in acetonitrile. 

7.1. Methodology 

In all cases considered here, the intermolecular potential function 
between sites i and j of two different molecules (solute-solvent or 
solvent-solvent) consists of electrostatic and Lennard-Jones (LJ) terms 

lz_ (7.1) uo.(r ) = 4a o. + 
r 
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The LJ interaction parameters between unlike sites are evaluated with the 
familiar Lorentz-Berthelot combining rules. 

To evaluate the dynamic and static aspects of solvation required by 
the dielectric theory of Section 6 we need estimates for the pure solvent 
dynamics and structure, as represented by Cu(k, t) and its initial value 
Su(k). In all cases the required solute-solvent and solvent-solvent structure 
functions are calculated with the extended reference interaction site method 
(XRISM).(43) 

The tcf C,(k, t) is calculated using the reference memory function 
approximation (RMFA) method. (15"35-37) This method identifies the 
normalized first memory function ~48) of C~(k, t) with the normalized first 
memory function of the known tcf (X(t) X(O)) of a reference dynamical 
variable X, thus providing an approximate relation r between 
C,(k, t) and the reference tcf (X(t)X(O)). Following the proposal of 
Fried and Mukamel, r we take as the reference dynamical variable 
X= {~,(k)/ik}~=o=)flL=%.Za lla, the total electric polarization in the 
direction ek of the wavevector k (Ira is the dipole moment of a solvent 
molecule). 7 The tcf (/~rL(t)/QL(0)) is a known functional of the frequency- 
dependent dielectric function e~o. r In our calculations either of these 
functions is taken from MD simulation results of various solvent models 
reported in the literature. 

7.2. So lva t ion  Dynamics  of  a Un iva len t  Ion in W a t e r  

To illustrate the usefulness of our approach, we compare for the 
dynamic solvation of an ion in water the surrogate estimate ~ . ~ ( t ) ,  
Eq. (6.15), with the solvation tcf ~ ( t )  calculated by nonequilibrium 
molecular dynamics (MD), Eq. (2.4). The simulation results are taken from 
the MD study by Maroncelli and Fleming, ~2m who used the ST2 water 
model of Stillinger and Rahman. ~5~ Our calculations use the transferable 
intermolecular potential model TIP4P of water due to Jorgensen and 
collaborators/51~ The motivation for choosing TIP4P is that a detailed 
characterization of the frequency-dependent dielectric function eo, by MD 
applied to this water model has been given by Neumann. c521 It provides our 
input for the calculation of C~,(k, t) under the RMFA approximation. C35-37~ 
A further reason is our ability to calculate the structure of this model under 
XRISM. 

In Fig. 1 we compare the predictions of the surrogate theory Y'~,u(t) 
and the results of nonequilibrium MD trajectories of Maroncelli and 

As implemented here, the RMFA approximation corresponds to the extension to ISM 
molecular fluids of the procedure introduced by Fried and Mukamel ~3~ to calculate the 
longitudinal dielectric function of a fluid of dipolar hard spheres. 
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- - S u r r o g a t e  
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Fig. 1. Solvation time correlation functions for ion solvation in water. The curve NEMD is 
from MD simulations by Maroncelli and Fleming, t2~ while the curve Surrogate is based on 
the present work. NEMD: Solvation tcf .~(t) calculated from nonequilibrium MD trajectories 
corresponding to the P--* S transition, Eq. (2.4). Surrogate: Solvation tcf .~.~,(t) calculated 
with Eq. (6.15). The Lennard-Jones parameters of the solute are given in the text. t is in units 
of ps. 

F leming (for a more  complete  compar ison,  together  with other  examples,  
see refs. 33 and 34). The case considered here cor responds  to the one 
labeled L0  ~ L +  (large neut ra l - - ,  large cat ion)  in ref. 20, namely a spheri-  
cal solute with LJ parameters  e/kB = 2668 K (where kB is the Bol tzmann 
constant )  and a = 6 . 9 7 5  ~,  which undergoes ionizat ion from QP/e=O to 
QS/e = 1 (where e is the p ro ton  charge). 

As Fig. 1 shows, the theoret ical  est imate ~ , j , ( t )  agrees surprisingly 
well with the nonequi l ibr ium M D  response. The surrogate  solvat ion tcf in 
Fig. 1 displays (i) a very fast initial decay ( ~ 6 0 %  of the total  decay within 
20-30 fs), (ii) a s t rong osci l latory feature due to the collective l ibra t ional  
mot ion  (optical  mode)  of water  (see refs. 36 and 37 and references therein),  
and (iii) a final slower re laxat ion of diffusive character.  

7.3. Solvation Dynamics of Benzenelike Solutes in Acetonitr i le 

In this section we repor t  calculat ions of .~,u(t) for a family of 
"benzenelike" solutes in acetonitrile.  The purpose  is to examine the effect 
of the bare charge dis t r ibut ion n~(r)  of the solute on the solvat ion time 
correlat ion function. 8 

8 The bare charge distribution of the solute in state D has the expression no~ = Za Q~ r-  ra). 
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The solvent is the three-site ISM model of acetonitrile developed by 
Edwards et aL (53) As input for the calculation of C , ( k ,  t) in Eq. (6.15) 
under the RMFA methodology (cf. Section 7.1), we use the polarization tcf 
<)l;/L(t) hT/L(0)> reported in ref. 53. 

The family of solutes studied comprises five models, four of which 
have 6 interaction sites, while the remaining one has 12 interaction sites. 
The geometry of the models is that of the benzene molecule, with a united- 
atom representation of the C - H  unit in the case of the 6-site models. For 
the 6-site solutes, the LJ parameters are taken from the 6-interaction-site 
model of benzene of Jorgensen and collaborators. ~54) For the 12-site solute 
the LJ parameters are taken from the more recent 12-interaction-site model 
of benzene developed by Jorgensen and Severance. ($5) 

In the P state all the solutes have zero partial charges Q~, so that 
hoP(r) =0.  The solutes are labeled after their charge distribution in the S 
state: localized monopole (1M), delocalized monopole (dM), dipole (D), 
quadrupole (Q), and octupole (O). A schematic representation of the 
solutes in the S state is shown in Fig. 2. The labels of the solutes corre- 
spond to the first nonzero multipole of the charge distribution nS(r). Note, 
however, that because the charge distributions have finite size, the higher- 
order multipoles are nonzero. In the S state the 1M model has a partial 

dM IM D 

Q o 

§ 

§ 

Fig. 2. Charge distribution of the "benzenelike" solutes in the S state. The partial charges QP 
of the solutes in the P states are zero. The magnitudes of the partial charges QS and other 
specifications of the models are given in the text. 
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charge QS/e = - 1 in site 2 = 1, and zero charge in the other sites, while in 
the dM model the sites have all the same charge s Q;./e = - 1/6 = - 0.167. 
In the D model QS/e=-QS/e=0.25. Finally, the absolute value of 
the partial charges in the Q and O models is s tQje[ =0.115 and 0.167, 
respectively. 

In Fig. 3 we present .~'hr.u(t) for the P ~ S transition of the dM, D, Q, 
and O models. According to the figure, the solvation rate depends 
markedly on the order of the first nonzero multipole in 
Zlno(r)=nS(r)-n~(r); the solvation is slower with increasing multipole 
order of Zlno(r). Thus, for the dM model there is a very fast initial decay 
of ~hr.u(t) (approximately 90 % of its initial value within the first 200 fsec), 
followed by a slower decay that presents pronounced oscillations, for 
which the librational motion of acetonitrile is responsibleY 3' 33.34) For the 
D model, Lrhu(t) presents a slower but still very fast initial decay 
(approximately 75 % in 200 fsec), but the oscillation amplitude is markedly 
attenuated compared to the oscillations in ~h~,( t)  of the dM model. For 
the Q and O models ~ h , ( t )  decays more slowly (approximately 55 and 
45% of the initial value within the first 200 fsec, respectively), while the 
oscillations have almost disappeared. The ordering, monopole faster than 

l i i i 

0.8 

0.6 

0.4 i i c~ .......... 

0.2 \ 
, . . ~ /  \ . 

0 I I r i 

0.2 0.4 0.6 0.8 
t(ps) 

Fig. 3. Surrogate estimate ..~.j,(t) of the solvation time correlation function for the 
benzenelike solutes in acetonitrile. The curves correspond to the solvation dynamics of the 
dM, D, Q, and O solutes following the P --* S transition, t is in units of ps. 
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dipole  faster than quadrupo le  faster than octupole,  is in agreement  with the 
results for another  family of solutes (of different geometry)  repor ted  
previously.  (34) 

In Fig. 4 we present  results for P ~ S transi t ions that  complement  the 
results of Fig. 3. Curves d M  and IM cor respond to the surrogate  est imate 
~.u(t) for the "monopo le"  solutes. The s t rong similari ty of these curves 
indicates that  the solvat ion dynamics  in acetonitr i le  is only negligibly 
affected by the nature,  d is t r ibuted (dM)  or  localized (1M), of the charge 
dis t r ibut ion nS(r) of the monopo le  solutes. Together  with Fig. 3, this result 
suggests that  for this family of solutes in acetonitri le,  what  dominates  the 
solvat ion response is the order of the lowest mul t ipole  that  contr ibutes  to 
z/n0(r ) in the P---, S transit ion.  Tha t  this is the case is i l lustrated by the 
similari ty of curves D and d M  --* 1M of Fig. 4. Curve D corresponds  to the 
P ~ S t ransi t ion of the D model;  it is the same as curve D in Fig. 3. In this 
t ransi t ion the mul t ipo la r  cont r ibu t ion  to Ano(r) of lowest order  is the 
d ipo la r  one. On the other  hand,  the curve 1M ~ d M  corresponds  to a 6-site 
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Fig. 4. Surrogate estimate .~ . , ( t )  of the solvation time correlation function for the ben- 
zenelike solutes in acelonitrile. The curves dM and 1M correspond to the solvation dynamics 
following the P ~ S transition of the DM and IM solutes. Curves D and dM --* IM (practically 
indistinguishable) correspond, respectively, to the P --* S transition of the D solute and to a 
6-site solute that undergoes a P--* S transition from delocalized monopole to localized 
monopole. See details in the text. t is in units of ps. 



264 Friedman et  al. 

monopole solute that undergoes a transition from delocalized monopole 
(with the charge distribution of the dM model) to localized monopole 
(with the charge distribution of the IM model). Because in such P ~ S  
transition both states have the same net charge, the lowest-order multipole 
contributing to •no(r) is again the dipole. Hence we conclude from the 
results of Figs. 3 and 4 that the solvation dynamics of the benzenelike 
solutes in acetonitrile is dominated by the lowest-order multipole of the 
difference function Ano(r) between the charge distributions of the solute in 
the P and S states. 

8. D I S C U S S I O N  

We have presented a generalization of a recently proposed t33'34) 
molecular theory of solvation dynamics. Like the polarization charge den- 
sity formulation, t33'34) the site number density formulation is capable not 
only of describing the normalized solvation tcf l-cf. Eq. (5.23)], but also of 
describing the evolution of various ancillary observables needed for a more 
detailed picture of the dynamic solvation response, t34~ Both formulations of 
the surrogate Hamiltonian theory are also able to quantify the contribution 
from various regions in the solvent around the solute to the global 
measures of the solvation response, t34~ 

The study of such problems in the site number density formulation, 
however, must wait for further developments in the theory of the dynamics 
of ISM molecular liquids, so that, for example, the site-site dynamic 
structure functions Fjz(k, t), Eq. (5.22), can be calculated accurately. 

A distinctive and important feature of these formulations of the 
surrogate Hamiltonian theory is that both the solute and the solvent 
molecules are described in terms of relatively realistic interaction site 
models. We emphasize that at no point in the development have we 
appealed to cavity constructs to describe the solute-solvent coupling. In the 
theory this coupling is treated at a molecular level in terms of the usual 
structural functions [Eqs. (5.16) and (6.10)] of the theory of fluids. 
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